تحلیل شناخت عوامل مؤثر در عملکرد کارکنان شرکت‏های خدماتی در استفاده از فناوری اطلاعات داده‏ های بزرگ

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 عضو علمی دانشگاه پیام نور

2 کارشناس ارشد مدیریت بازرگانی

چکیده

جهانی شدن بازار عرصه رقابت را برای شرکت‌ها بسیار شدیدتر کرده است، شرکت‌ها تلاش می‌کنند با بهره‌گیری از منابع و فرآیندهای مختلف مزیت‌های رقابتی خود را افزایش و یا حداقل حفظ کنند. پیشرفت فن‌آوری اطلاعات موجب شده تا شرکت‌های خدماتی حجم زیادی از داده‌های مربوط به مشتریان خود را نگهداری و در تفکرات استراتژیک بازاریابی خود بهره‌برداری نمایند. از این‌رو، شناخت بیشتر مشتریان با استفاده از فن‌آوری اطلاعات داده‌های بزرگ به دلیل داشتن حجم بسیار زیاد داده‌های به ظاهر نامرتبط و همچنین به‌کارگیری نرم‌افزارهای پیچیده‌ آماری برای تحلیل نیازهای مشتریان در دهه‌های اخیر در شرکت‌های خدماتی مورد توجه قرار گرفته است. در این پژوهش می‌پردازیم به شناخت عوامل تأثیرگذار بر عملکرد واقعی کارکنان شرکت شاتل در استفاده از فن‌آوری اطلاعات داده‌های بزرگ که منجر به عملکرد شرکت خدماتی می‌شود. هدف این پژوهش کاربردی و به روش توصیفی با جامعه آماری کارکنان شرکت همراه اول استان البرز است. تحلیل‌های آماری با استفاده از نرم‌افزارهای اس‌پی‌اس‌اس و آموس انجام شده و در آزمون فرضیه‌ها از روش معادلات ساختاری استفاده شده که تائید همه فرضیه‌ها به جزء دو فرضیه ریسک درک شده بر پیش‌بینی عملکرد و همین‌طور ریسک درک شده بر قصد رفتاری است. یافته‌های پژوهش نشان دهنده اثر پیش‌بینی عملکرد، پیش‌بینی تلاش و عوامل اجتماعی بر عملکرد کارکنان شرکت شاتل از طریق قصد رفتاری با در نظر گرفتن اثر ریسک درک شده، هزینه فرصت و مقاومت در برابر استفاده از داده‌های بزرگ است.

کلیدواژه‌ها


عنوان مقاله [English]

Factor recognition analysis on the performance of employees of service companies in the use of big data information technology

نویسندگان [English]

  • yazdan shirmohammadi 1
  • Arash Bostan Manesh 2
1 Faculty member of Payame Noor University
2 Master of Business Administration
چکیده [English]

The globalization of the market has intensified the field of competition for companies, companies are trying to increase or at least maintain their competitive advantages by using different resources and processes. Advances in information technology have enabled service companies to store large amounts of data about their customers and exploit it in their strategic marketing thinking. Hence, more knowledge of customers using big data information technology has been considered due to the large volume of seemingly unrelated data as well as the use of complex statistical software to analyze customer needs in recent decades in service companies. In this study, we identify the factors that affect the actual performance of Shuttle employees in the use of big data information technology that leads to the performance of the service company. The purpose of this research is applied and descriptive with the statistical population of the employees of the first mobile company in Alborz province. Statistical analyzes were performed using SPSS and Amos software and structural equations were used to test the hypotheses, which confirmed all but one of the two perceived risk hypotheses on performance prediction as well as perceived risk on behavioral intent. Findings show the effect of performance forecasting, effort forecasting and social factors on the performance of shuttle employees through behavioral intent, taking into account the perceived effect of risk, opportunity cost and resistance to the use of big data.

کلیدواژه‌ها [English]

  • Information technology
  • big data
  • employee behavior
  • perceived risk
  • technology resistance
 
Ahmed, W., Kim, W. G., Anwer, Z., & and Zhuang, W. (2020). “Schwartz personal values, theory of planned behavior and environmental consciousness: How tourists’visiting intentions towards eco-friendly destinations are shaped?”. Journal of Business research, 110, pp. 228-236.
Ajzen, I. (1991). “The theory of planned behavior”. Organizational Behavior and Human Decision Processes, 50(2), pp. 179–211.
Alkhowaiter, W. A. (2020). “Digital payment and banking adoption research in Gulf countries: A systematic literature review”. International Journal of Information Management, 53, 102102.
Al-Saedi, K., Al-Emran, M., Ramayah, T., and Abusham, E. (2020). “Developing a general extended UTAUT model for M-payment adoption”. Technology in society, 62, 101293.
Bag, S., Wood, L. C., Xu, L., Dhamija, P., and Kayikci, Y. (2020). “Big data analytics as an operational excellence approach to enhance sustainable supply chain performance”. Resources, Conservation and Recycling, 153, 104559.
Bhattachreejee, A., and Hikmet, N. (2007). “Physician's resistance toward healthcare information technology: a theoretical model and empirical test”. European Journal of Information Systems, 16(6), pp. 725-737.
Biag, M. I., Shuib, L., and Yadegaridehkordi, E. (2019). “Big data adoption: State of the art and research challenges”. Information Processing and Management, 56(6), 102095.
Bu, F., Wang, N., Jiang, B., and Liaing, H. (2020). “Privacy by Designimplementation: Information system engineers’perspective”. International Journal of Information Management, 53, 102124.
Cabrera-Sánchez, J. P., and Villarejo-Ramos, Á. F. (2020). “Acceptance and Use of Big Data Techniques in services companies”. Journal of Retailing and Consumer Services, 52, 101888.
Cao, Q., and Niu, X. (2019). “Integrating context-awareness and UTAUT to explain Alipay user adoption”. International Journal of Industrial Ergonomics, 69, pp. 9-13.
Chang, Y., Hou, R. J., Wang, K., Cui, A. P., and Zhang, C. B. (2020). “Effects of intrinsic and extrinsic motivation on social loafing in online travel communities”. Journal of Computers in Human Behavior, 109, 106360.
Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., and Xia, R. (2020). “TBtools: an integrative toolkit developed for interactive analyses of big biological data”. Molecular plant, 13(8), pp. 1194-1202.
Compeau, D. R., and Higgins, C. A. (1995). “Application of social cognitive theory to training for computer skills”. Management Information Systems Research Center, University of Minnesota, 6(2), pp. 118-143.
Davis, F. D. (1989). “Perceived usefulness, perceived ease to use, and user acceptance of information technology”. Management Information Systems Research Center, University of Minnesota, pp. 319-340.
Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1992). “Extrinsic and intrinsic motivation to use computers in the workplace”. Journal of Applied Social Psychology, 22(14), pp. 1111-1132.
Driedigera, F., and Bhatiasevib, V. (2019). “Online grocery shopping in Thailand: Consumer acceptance and usage behavior”. Journal of Retailing and Consumer Services, 48, pp. 224-237.
Dubey, R., Gunasekaran, A., Childe, S. J., Roubaud, D., Wamba, S. F., Giannakis, M., and Foropon, C (2019). “Big data analytics and organizational culture as complements to swift trustand collaborative performance in the humanitarian supply chain”. International Journal of Production Economics, 210, pp. 126-136.
Faridi, A. A., Kavoosi-Kalashami, M., and El Bilali, H. (2020). “Attitide components affecting adoption of soil and water conservation measure by Paddy farmers in Rasht Country, Northern Iran”. Land Use Policy, 99, 104885.
Davis, F. D. (1987). “User acceptance of information systems: the technology acceptance model (TAM)”.
Guerin, R. J., and Toland, M. D. (2020). “An application of a modified theory of planned behavior model to investigate adolescents’ job safety knowledge, norms, attitude and5intention to enact workplace safety and health skills”. Journal of Safety Research, Vol.72, pp. 189-198.
Hamilton, R. H., and Sodeman, W. A. (2020). “The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources”. Business Horizons, 63(1), pp. 85-95.
Hong, A., Nam, C., and Kim, S. (2019). “What will be the possible barriers to consumers’ adoption of smarthome services?”. Telecommunications Policy, 44(2), 101867.
Huang, L., Wu, C., and Wang, B. (2019). “Challenges, opportunities and paradigm of applying big data to production safety management: From a theoretical perspective”. Journal of Cleaner Production, 231, pp. 592-599.
Iancu, I., and Iancu, B. (2020). “Designing mobile technology for elderly. A thoritical overview”. Tchnological Forecasting and Social Change. 155, 119977.
Jahanshahi, D., Tabibi, Z., and Van Wee, B. (2020). “Factors influencing the acceptance and use of a bicycle sharing system: Applying an extended Unified Theory of Acceptance and Use of technology (UTAUT)”. Case studies on transport policy, 8(4), pp. 2213-624X.
Kaye, S. A., Lewis, I., Forward, S., and Delhomme, P. (2020). “A priori acceptance of highly automated cars in Australia, France, and Sweden: A theoretically-informed investigation guided by the TPB and UTAUT”. Accident Analysis & Prevention, 137, 105441.
Kim, D. J., Ferrin, D. L., and Rao, H. R. (2008). “A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents”. Decision support systems, 44(2), pp. 544-564.
Kim, H. W., and Kankanhalli, A. (2009). “Investigating user resistance to information systems implementation: A status quo bias perspective”. Management Information Systems Research Center, pp. 567-582.
Kim, M. J., and Hall, C. M. (2020). “What drives visitor economy crowdfunding? The effect of digital storytellingon unified theory of acceptance and use of technology”. Tourism Management Perspectives, 34, 100638.
Kushwah, S., Dhir, A., and Sagar, M. (2019). “Understanding Consumer Resistance to the Consumption of Organic Food. A Study of Ethical Consumption, Purchasing, and Choice Behaviour”. Journal of Quality and Preference. S0950-3292(18)30981-9. https://doi.org/10.1016/j.foodqual.2019.04.003.
Laurentia, R., Acuna, F., and Manuel, B. (2019). “Exploring antecedents of behavioural intention and preferences in online peer-to-peer resource sharing in a Swedish university setting”. Sustainable Production and Consumption, Vol. 21, pp. 45-56.
Liu, Y., Wang, R., Lu, Y., Li, Z., Chen, H., Cao, M., Zhang, Y., and Song, Y. (2019). “Natural outdoor environment, neighbourhood social cohesion and mental health: Using multilevel structural equation modelling, streetscape and remote-sensing metrics”. Journal of Urban Forestry & Urban Greening, S1618-8667(19)30521-7.
Mikalef, P., Krogstie, J., Pappas, I. O., and Pavlou, P. (2020). “Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities”. Information & Management, 57(2), 103169.
Moore, G. C., and Benbasat, I. (1991). “Development of an instrument to measure the perceptions of adopting an information technology innovation”. Information Systems Research, 2(3), pp. 192-222.
Nicolaou, A. I., and McKnight, D. H. (2006). “Perceived information quality in data exchanges: Effects on risk, trust, and intention to use”. Information Systems Research, 17(4), pp. 332–351.
Nikhashemi, S. R., Jebarajakirthy, C., and Nusair, K. (2019). “Uncovering the roles of retail brand experience and brand love in the apparal industry: Non-linear structural equation modelling approach”. Journal of Retailing and Consumer Services, 48, pp. 122-135.
Pavlou, P. A., and Gefen, D. (2004). “Building effective online marketplaces with institution-based trust”. Information Systems Research, 15(1), pp. 37-59.
Persson, E., and Tinghög, G. (2020). “Opportunity cost neglect in public policy”. Journal of Economic Behavior and Organization, 170, pp. 301-312.
Puspitasari, N., Firdaus, M. B., Haris, C. A., and Setyadi, H. J. (2019). “An application of the UTAUT model for analysis of adoption of integrated license service information system. The Fifth Information Systems International Conference 2019”. Procedia Computer Science, 161, pp. 57-65.
Rafique, H., Shamim, A., and Anwar, F. (2019). “In vestigating acceptance of mobile library application with extended technology acceptance model (TAM)”. Journal of Computers & Education, S0360-1315(19)30285-4. https://doi.org/10.1016/j.compedu.2019.103732.
Ryan, R. M., and Desi, E. L. (2020). “Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions”. Journal of Contemporary Educational Psychology, 61, 101860.
Salleh, K. A., and Janczewski, L. (2020). “Security Considerations in Big Data Solutions Adoption; Lessons from a Case Study on a Banking Institution. Centeris-International Conference on ENTERprise Information Systems / ProjMAN- International Conferece on Project MANegement / HCist- International Conference on Health and Social Care Information Systems and Technologies”. Procedia Computer Science, 164, pp. 168-176.
Sharma, R., Singh, G., and Sharma, S. (2020). “Modelling internet banking adoption in Fiji: A developing country perspective”. International Journal of Information Management, 53, 102116.
Shiferaw, K. B., and Meharib, E. A. (2019). “Modeling predictors of acceptance and use of electronic medical record system in a resource limited setting: Using modified UTAUT mode. Debre Markos University, College of Medicine and Health Science”, Department of Health Informatics, 17, 100182.
Silva, J., Lezama, O. B. P., Romero, L., Solano, D., and Fernández, C. (2019). “Risk analysis of using big data in computer sciences. The 6th International Symposium on Emerging Information, Communication and Networks”. Procedia Computer Science, 1606, pp. 532-537.
Singh, N., Sinha, N., and Liébana-Cabanillas, F. J. (2020). “Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence”. International Journal of Information Management, 50, pp. 191-205.
Soh, P., Heng, H., Selvachandran, G., Anh, L., Chau, H., Son, L., Baset, M., Manogaran, G., and Varatharajan, R. (2020). “Perception, acceptance and willingness of older adults in Malaysia towards online shopping: a study using the UTAUT and IRT models”. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-01718-4.
Sultan, P., Tarafder, T., Pearson, D., & Henryks, J. (2019). “Intention–Behaviour Gap and Perceived Behavioural Control–Behaviour Gap in Theory of Planned Behaviour: Moderating Roles of Communication, Satisfaction and Trust in Organic Food Consumption”. Journal of Food Quality and Preference. S0950-3293(19)30073-4. https://doi.org/10.1016/j.foodqual.2019.103838.
Sun, S., Hall, D. J., and Cegielski, C. G. (2019). “Organizational intention to adopt big data in the B2B context: An integrated view”. Industrial Marketing Management, Vol. 86, pp.109-121.
Thompson, Ronald L., Higgins, Cristopher A., and Howell, Jane M. (1991). “Personal Computing: Toward a Conceptual Model of Utilization”. MIS Quarterly, Vol.15 No.1 pp. 125-143. http://www.jstor.org/stable/249443.
Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). “User acceptance of information technology: Toward a unified view”. MIS quarterly, pp. 425-478.
Wang, H., Tao, D., Yu, N., and Qu, X. (2020). “Understanding consumer acceptance of healthcare wearable devices: An integrated model of UTAUT and TTF”. International Journal of Medical Informatics, S1386-5056(19)31143-8. https://doi.org/10.1016/j.ijmedinf.2020.104156.
Yadegaridehkordi, E., Nilashi, M., Shuib, L., and Hairul, M. (2019). “The Impact of Big Data on Firm Performance in Hotel Industry”. Journal Pre- proofs. ELERAP 100921. https://doi.org/10.1016/j.elerap.2019.100921.
Yuen, K., Wong, Y., Ma, F., and Wang, X. (2020). “The determinants of public acceptance of autonomous vehicles: An innovation diffusion perpective’. Journal Pre-Proof Cleaner Production. S0959-6526(20)31951-X. https://doi.org/10.1016/j.jclepro.2020.121904.
Christina, T. Z., Zhang, P., and Lu, L. (2020). “Service encounter value and online engagement behaviors”. International journal of Hospitality Management, 85, 102338.
Zhao, Y., and Bacao, F. (2020). “What factors determining customer continuingly using food delivery apps during 2019 novel coronavirus pandemic period?”. International Journal of Hospitality Management, 91, 102683.
Zhou, M., Zhao, L., Kong, N., Campy, K. S., Xu, G., Zhu, G., ... and Wang, S. (2020). “Understanding consumer's behavior to adopt self-service parcel services for last-mile delivery”. Journal of Retailing and Consumer Services, 52, 101911.