بررسی رویکرد تلفیقی در سیستم های هوش کسب‌وکار با تمرکز بر داده‌کاوی

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناسی ارشد مهندسی فناوری اطلاعات گرایش تجارت الکترونیک (الکترونیکی)، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 دکتری مهندسی صنایع، عضو هیئت علمی دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

در دنیای کسب وکار و عصر دانایی، هوشمندی یکی از الزامات انکارناپذیر برای اغلب سازمان ها است تا بتوانند از راه افزایش دانش و خلق آگاهی بر قابلیت هایشان بیفزایند و خود را برای سازگاری با تغییرات و تحولات محیط آماده کنند. هوشمندی کسب وکار، مجموعه توانایی ها، فناوری ها، ابزارها و راهکارهایی است که به درک بهتر از شرایط کسب وکار و سازگاری با آن کمک می کند. داده کاوی درحکم ابزار قدرتمند هوش کسب و کار برای کشف دانش شناخته شده، اما هنوز کاملاً با آن یک پارچه نشده است. با توجه به بررسی ادبیات موضوع، رویکردی جامع و کاملی که همۀ ابعاد هوش کسب و کار را دربر گیرد کمتر یافت شده است. هدف از این مطالعه بررسی رویکردی تلفیقی است که با مرور مدل های معتبر و ارزیابی شده به دست آمده است و در آن به ابعاد گوناگون مطرح شده در موضوع هوشمندی کسب وکار، ازجمله پیاده سازی مقرون به صرفه ، به کارگیری مؤثر و ارزیابی سیستم پرداخته شده است. در فاز پیاده سازی، استفاده از عامل های هوشمند و زبان داده کاوی کسب و کارگرا مطرح شده است. در فاز به کارگیری فرایند، به اشتراک گذاری دانش میان متخصصان و مدیران سازمان و در فاز آخر نیز ارزیابی سیستم ها مطرح شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Integrated Approach to Business Intelligent Systems with Focus on Data Mining

نویسندگان [English]

  • Zeinab Saadati 1
  • Mohammad Jafar Tarokh 2
1 Master of Information Technology Engineering, K.N.Toosi -Tehran-Iran
2 Faculty of Industrial Engineering K. N. Toosi University of Technology
چکیده [English]

In the business world and knowledge age, intelligence is one of the undeniable requirements for most organizations so that they can increase their capabilities by increasing deploying knowledge and awareness, and prepare themselves to adapt to changes and environment. Business intelligence is a set of abilities, technologies, tools and solutions that help you better understand business conditions and adapt to it. Data mining is known as a powerful business intelligence tool for discovery, but has not yet fully integrated with it. in the literature, less found a comprehensive and complete approach embracing all aspects of business intelligence. The purpose of this study is to examine the integrated approach that has been reviewed by validated and evaluated models and addresses various aspects of business intelligence, including cost-effective implementation, effective application and system evaluation. It has bees introduced the use of intelligent agents and usiness process data-mining languages In the implementation phase, process of sharing knowledge between the organization's specialists and managers in application phase, and the evaluation of systems in the last phase.

کلیدواژه‌ها [English]

  • Knowledge Management
  • Business Intelligence
  • Data mining
  • Multi Agent Systems

منابع

روحانی، س. و ربیعی ساوجی، س. (1395). «مدل ارزیابی موفقیت ابزارهای هوش کسب‌وکار». مطالعات مدیریت فناوری اطلاعات. 4(15)، 29-64
محقر، ع.، لوکس، ک، حسینی، ف. و منشی آصف، ع. (1387). «کاربرد هوش تجاری به‌عنوان یک تکنولوژی اطلاعات استراتژیک در بانکداری: بازرسی و کشف تقلب».‎  نشریۀ مدیریت فناوری اطلاعات، 1(1)، 105-120.
ابدالی، ع.، یاوری، ع. و بشارتی ا. (1395). «بررسی تأثیر انواع هوش سازمانی، تجاری و رقابتی بر عملکرد سازمانی (مورد مطالعه: بانک قوامین)». مجلۀ توسعۀ مدیریت منابع انسانی و پشتیبانی، 41.
Armugam, M. and Devadas. J. )2010(. “Object Oriented Intelligent Multi-Agent System Data Cleaning Architecture to clean Preference based Text Data”. International Journal of Computer Applications 9(8), 6234-6247.
Arnotta, D., Lizamab, F. and Songa, Y. (2017). “Patterns of business intelligence systems use in organizations”. Journal of Decision Support Systems, 97(1), 58-68.
Azeved, A. and Santos, M. F. (2012). “Binding Data Mining to Final Business Users of Business Intelligence Systems”. In Proceedings of the First International Conference on Intelligent Systems and Applications, 7-12.
Bostrom, N. (2014). Super Intelligence: Paths, Dangers, Strategies, Edition: 1 st, Oxford University Press.
Ferranti, J. M., Langman, M. K., McCall, J. and Asif, A. (2009). “Bridging the gap: leveraging business intelligence tools in support of patient safety and financial effectiveness”. Journal of the American Medical Informatics Association, 5(1), 136–143.
Han, J., Kamber, M. and Pei, J. (2011). Data Mining: Concepts and Techniques. 3rd edition. Elsevier: Philadelphia.
Herschel, R.T. and Jones, N.E. (2005). “Knowledge management and business intelligence: the importance of integration.” Journal of Knowledge Management, 9(4), 45-55.
JINPON, p. g., ASINEE, M. J. and ASINEE, K. J. (2011). “Business Intelligence and its Applications in the Public Healthcare System”. Walailak J Sci & Tech, 8(2), 30–44.
Kaplan, J. (2007). “Data mining as a service: the prediction is not in the box”. DM Review Magazine, 17(7), 12-14.
King, J. (2005). “Better decisions”. Computer world, 39(38), 48-9.
Lonnqvist, A. and V., Pirttimaki (2006). “The Measurement of Business Intelligence”. Information Systems Management, 23(1), 32-40.
Moghaddasi, H., Hoseini, A., asadi, F. and Jahanbakhs. M. (2012). “Data Mining and Its Applications in HealthCare”. Health Information Management. 9(2), 297-304.
Olszak, C. M. and Ziemba, E. (2007). “Approach to Building and Implementing Business Intelligence Systems”. Interdisciplinary Journal of Information, Knowledge, and Management, 2(1), 135–148.
Pechenizkiy, M., Puuronen, S. and Tsymba, A. (2005). “Why data mining research does not contribute to business”. Data Mining for Business Workshop,1(2), 67-71.
Pereira, R. H., Azevedo, A. and Castilho, O. (2007). “Secretaria On-Line From Iscap: A Case of Innovation”. In Proceedings of the IADIS International Conference, 301-305.
Richardson, J., Schlegel, K., and Hostmann, B. (2009). “Magic Quadrant for Business Intelligence Platforms”. Gartner Report, 1(1), 2-32.
Russell, S.J. and Norvig, p. (2005). Artificial intelligence a modern approach. Prentice Hall International Englewood Cliffs. NJ.
Sawka, K. (2000). “Are We Valuable?”. Competitive Intelligence Magazine, 3(2).
Shabestari, F. and Ja'farzadeh, R. (2011). “Data mining in Business Intelligence”. In Proceedings of the first Conference of the new approach in computer engineering and information technology. 1(1), 23-29.
.
Venkatadri, M., Hanuma, G. and Manjunath. G. (2010). “A Novel Business Intelligence System Framework”. Universal Journal of Computer Science and Engineering Technology, 1(2), 112-116.
Wager, K.A., Lee, F.W. and Glaser, J.P. (2005). “Managing Health Care Information Systems: A Practical Approach for Health Care Executives”. John Wiley & Sons, New Jersey.
Wang, H., Wang, S. (2008). “A knowledge management approach to data mining process for business intelligence”. Industrial Management & Data Systems, 108(5), 622-634.
Wang, J., Hu, X. and Zu., D. (2007). “Diminishing downsides of data mining”. InternationalJournal of Business Intelligence and Data Mining, 2(2), 96-177.