Document Type : Translation
Authors
1 Master student of Information Technology Management majoring in e-business in the Faculty of Management, Economics and Development Engineering of Iran University of Science and Technology
2 Master student of Information Technology Management (Electronic Business), University of Science and Technology
Abstract
Keywords
Main Subjects
Alcácer, V., & Cruz-Machado, V. (2019). Scanning the industry 4.0: A literature review on technologies for manufacturing systems. Engineering science and technology, an international journal, 22(3), 899-919.
Aldrighetti, R., Zennaro, I., Finco, S., & Battini, D. (2019). Healthcare supply chain simulation with disruption considerations: A case study from Northern Italy. Global Journal of Flexible Systems Management, 20(Suppl 1), 81-102. Doi: 10.1007/ s40171-.019-00223-8.
Amaral, L. A. N., & Uzzi, B. (2007). Complex systems—A new paradigm for the integrative study of management, physical, and technological systems. Management science, 53(7), 1033-1035.
Anderson, P. (1999). Perspective: Complexity theory and organization science. Organization science, 10(3), 216-232.
Ashby, W. R. (1956). An Introduction to Cybernetics. London: Chapman and Hall.
Audi (2019). Flexible Montage in der Fahrzeugproduktion Die flexible Audi R8-Manufaktur mit fahrerlosen Trans-portfahrzeugen. Accessed 4 October 2019. https://www. plattform-i40.de/PI40/Redaktion/DE/Anwendungsbeis piele/137-wandelbare-r8-manufaktur/beitrag-wandelbare-r8-manufaktur.html.
Barabási, A. L. (2005). Network theory--the emergence of the creative enterprise. Science, 308(5722), 639-641..
Basole, R. C., & Bellamy, M. A. (2014). Supply network structure, visibility, and risk diffusion: A computational approach. Decision Sciences, 45(4), 753-789.
Beer, S. (1985). Diagnosing the System for Organisations Wiley.
Bellmann, R. (1972). Adaptive Control Processes: A Guided Tour. Princeton, NJ: Princeton Univ. Press.
Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: a literature review. International journal of production research, 57(15-16), 4719-4742.
Bordoloi, S. K., Cooper, W. W., & Matsuo, H. (1999). Flexibility, adaptability, and efficiency in manufacturing systems. Production and Operations Management, 8(2), 133-150.
Buer, S. V., Strandhagen, J. O., & Chan, F. T. (2018). The link between Industry 4.0 and lean manufacturing: mapping current research and establishing a research agenda. International journal of production research, 56(8), 2924-2940.
Cachon, G. P., Girotra, K., & Netessine, S. (2020). Interesting, important, and impactful operations management. Manufacturing & Service Operations Management, 22(1), 214-222.
Calzavara, M., D. Battini, D. Bogataj, F. Sgarbossa, and I. Zennaro. 2020. “Ageing Workforce Management in Man-ufacturing Systems: State of the Art and Future Research Agenda.” International Journal of Production Research 58 (3): 729–747.
Camarinha-Matos, L. M. (2009). Collaborative networked organizations: Status and trends in manufacturing. Annual Reviews in Control, 33(2), 199-208.
Casti, J. L. (1979). Connectivity, complexity and catastrophe in large-scale systems (Vol. 7). John Wiley & Sons.
Cavalcante, I. M., Frazzon, E. M., Forcellini, F. A., & Ivanov, D. (2019). A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. International Journal of Information Management, 49, 86-97.
Choi, T. Y., Dooley, K. J., & Rungtusanatham, M. (2001). Supply networks and complex adaptive systems: control versus emergence. Journal of operations management, 19(3), 351-366.
Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and Operations Management, 27(10), 1868-1883.
Chou, M. C., Chua, G. A., Teo, C. P., & Zheng, H. (2010). Design for process flexibility: Efficiency of the long chain and sparse structure. Operations research, 58(1), 43-58.
Das, A., Narasimhan, R., & Talluri, S. (2006). Supplier integration—finding an optimal configuration. Journal of operations management, 24(5), 563-582.
Dekkers, R. (2009). Distributed manufacturing as co-evolutionary system. International Journal of Production Research, 47(8), 2031-2054.
Demirezen, E. M., Kumar, S., & Shetty, B. (2020). Two is better than one: A dynamic analysis of value co‐creation. Production and operations management, 29(9), 2057-2076.
Disney, S. M., & Towill, D. R. (2003). Vendor‐managed inventory and bullwhip reduction in a two‐level supply chain. International journal of operations & production Management, 23(6), 625-651.
Dolgui, A., Ivanov, D., Potryasaev, S., Sokolov, B., Ivanova, M., & Werner, F. (2020). Blockchain-oriented dynamic modelling of smart contract design and execution in the supply chain. International Journal of Production Research, 58(7), 2184-2199.
Dolgui, A., Ivanov, D., Sethi, S. P., & Sokolov, B. (2019). Scheduling in production, supply chain and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art and applications. International journal of production research, 57(2), 411-432.
D'Souza, D. E., & Williams, F. P. (2000). Toward a taxonomy of manufacturing flexibility dimensions. Journal of operations management, 18(5), 577-593.
Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., & Papadopoulos, T. (2019). Big data and predictive analytics and manufacturing performance: integrating institutional theory, resource‐based view and big data culture. British Journal of Management, 30(2), 341-361.
Dubey, R., A. Gunasekaran, S. J. Childe, S. F. Wamba, D. Roubaud, and C. Foropon. )2019b(. Empirical Investigation of Data Analytics Capability and Organizational Flexibility as Complements to Supply Chain Resilience. International Journal of Production Research. doi:10.1080/00207543.2019. 1582820.
Fox, M. S., M. Barbuceanu, and R. Teigen. )2000(.Agent-oriented Supply Chain Management System. International Journal of Flexible Manufacturing Systems. 12, 165–188.
Fragapane, G., M. Peron, F. Sgarbossa, J. O. Strandhagen, and D. Ivanov. (2020). Increasing Flexibility and Productiv-ity in Industry 4.0 Production Networks with Autonomous Mobile Robots and Smart Intralogistics. Annals of Opera-tions Research. 308, 125-143. Doi: 10.1007/s10479-020-03526-7.
Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International journal of production economics, 210, 15-26.
Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International journal of production economics, 210, 15-26.
Gunasekaran, A., & Ngai, E. W. (2009). Modeling and analysis of build-to-order supply chains. European Journal of Operational Research, 195(2), 319-334.
Ivanov, D. (2018). Structural dynamics and resilience in supply chain risk management (Vol. 265). Berlin, Germany: Springer International Publishing.
Ivanov, D. (2020). Viable Supply Chain Model: Integrating Agility, Resilience and Sustainability Perspectives. Lessons From and Thinking Beyond the COVID-19 Pandemic. Annals of Operations Research. 1, 1411-1431 Doi: 10.1007/s10479-020-03640-6.
Ivanov, D., A. Das, and T.-M. Choi. (2018). New Flexibility Drivers in Manufacturing, Service, and Supply Chain Sys-tems. International Journal of Production Research. 56(10), 3359–3368.
Ivanov, D., and A. Dolgui. (2020a). A Digital Supply Chain Twin for Managing the Disruption Risks and Resilience in the era of Industry 4.0. Production Planning and Control. 32, 775-788. doi:10.1080/09537287.2020.1768450.
Ivanov, D., and A. Dolgui. )2020b(. Viability of Intertwined Supply Networks: Extending the Supply Chain Resilience Angles towards Survivability. A Position Paper Motivated by COVID-19 Outbreak. International Journal of Production Research, 58(10), 2904–2915.
Ivanov, D., A. Dolgui, and B. Sokolov. (2019). The Impact of Digital Technology and Industry 4.0 on the Ripple Effect and Supply Chain Risk Analytics. International Journal of Production Research, 57(3), 829–846.
Ivanov, D., A. Dolgui, B. Sokolov, F. Werner, and M. Ivanova. (2016). A Dynamic Model and an Algorithm for Short-term Supply Chain Scheduling in the Smart Factory Industry 4.0. International Journal of Production Research, 54(2), 386–402.
Ivanov, D., S. Sethi, A. Dolgui, and B. Sokolov. (2018). A Survey on the Control Theory Applications to Operational Sys-tems, Supply Chain Management and Industry 4.0. Annual Reviews in Control, 46, 134–147.
Ivanov, D., & Sokolov, B. (2010). Adaptive supply chain management. Springer Science & Business Media.
Ivanov, D., and B. Sokolov. (2012). The Inter-disciplinary Mod-elling of Supply Chains in the Context of Collaborative Multi-structural Cyber-physical Networks. Journal of Man-ufacturing Technology Management, 23(8), 976–997.
Ivanov, D., B. Sokolov, W. Chen, A. Dolgui, F. Werner, and S. Potryasaev. (2020). A Control Approach to Scheduling Flexibly Configurable Jobs with Dynamic Structural-Logical Constraints. IISE Transactions, 1–18. Doi: 10.1080/24725854. 2020.1739787.
Jabbour, C. J. C., Lopes de Sousa Jabbour, A. B., Godinho Filho, M., & Roubaud, D. (2018). Industry 4.0 and the circular economy: a proposed research agenda and original roadmap for sustainable operations. Annals of Operations Research, 270, 273-286.
Ferreira, K. J., Lee, B. H. A., & Simchi-Levi, D. (2016). Analytics for an online retailer: Demand forecasting and price optimization. Manufacturing & service operations management, 18(1), 69-88.
Jordan, W. C., & Graves, S. C. (1995). Principles on the benefits of manufacturing process flexibility. Management science, 41(4), 577-594.
Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., & Van Brussel, H. (1999). Reconfigurable manufacturing systems. CIRP annals, 48(2), 527-540.
Kumar, S., Mookerjee, V., and Shubham, A. (2018). Research in operations management and information systems interface. Production and Operations Management, 27(11), 1893-1905.
Kusiak, A. (2018). Smart Manufacturing. International Journal of Production Research, 56(1–2), 508–517.
Lee, H., and Özer, Ö. (2007). Unlocking the value of RFID. Production and operations management, 16(1), 40-64.
Li, Y., Jia, G., Cheng, Y., and Hu, Y. (2017). Additive Manufacturing Technology in Spare Parts Supply Chain: A Comparative Study. International Journal of Production Research, 55(5), 1498–1515.
Liao, Y., Deschamps, F., Loures, E. D. F. R., and Ramos, L. F. P. (2017). Past, Present and Future of Industry 4.0 – A Systematic Literature Review and Research Agenda Proposal. International Journal of Production Research, 55(12), 3609–3629.
Li, S., and Visich, J. K. (2006). Radio Frequency Identification: Supply Chain Impact and Implementations Challenges. International Journal of Integrated Supply Management, 2(4), 407–424.
Liu, Y., Wang, L., Wang, X. V., Xu, X., and Zhang, L. (2019). Scheduling in Cloud Manufacturing: State-of-the-art and Research Challenges. International Journal of Production Research, 57(15–16), 4854–4879.
Luthra, S., Kumar, A., Zavadskas, E. K., Mangla, S. K., and Garza-Reyes, J. A . (2020). Industry 4.0 as an Enabler of Sustainability Diffusion in Supply Chain: An Analysis of Influential Strength of Drivers in an Emerging Economy. International Journal of Production Research, 58(5), 1505– 1521.
Machado, C. G., Winroth, M. P., and Ribeiro da Silva, E. H. D. (2020). Sustainable Manufacturing in Industry 4.0: An Emerging Research Agenda. International Journal of Production Research, 58(5), 1462–1484.
Magoroh, M. (2017). The second cybernetics: Deviation-amplifying mutual causal processes. In Systems Research for Behavioral Science (pp. 304-313). Routledge.
Mesarovic, M. D., and Takahara, Y. (1975). General systems theory: mathematical foundations. Academic press.
Mittal, S., Khan, M. A., Romero, D., and Wuest, T. (2018). A Critical Review of Smart Manufacturing & Industry 4.0 Maturity Models: Implications for Small and Medium Sized Enterprises (SMEs). Journal of Manufacturing Systems, 49, 194–214.
Moghaddam, M., and Nof, S. Y. (2018). Collaborative Service-Component Integration in Cloud Manufacturing. International Journal of Production Research, 56(1–2), 677–691.
Nair, A., and Vidal, J. M. (2011). Supply Network Topology and Robustness Against Disruptions – An Investigation Using a Multi-agent Model. International Journal of Production Research, 49(5), 1391–1404.
Nayak, A., Reyes Levalle, R., Lee, S., and Nof, S. Y. (2016). Resource Sharing in Cyber physical Systems: Modeling Framework and Case Studies. International Journal of Production Research, 54(23), 6969–6983.
Nof, S. Y. (2007). Collaborative Control Theory for E-work, E-production, and E-service. Annual Reviews in Control, 31(2), 281–292.
Nof, S. Y., Morel, G., Monostori, L., Molina, A., and Filip, F. (2006). From Plant and Logistics Control to Multi-enterprise Collaboration. Annual Reviews in Control, 30(1), 55–68.
Oesterreich, T. D., and Teuteberg, F. (2016). Understanding the Implications of Digitisation and Automation in the Context of Industry 4.0: A Triangulation Approach and Elements of a Research Agenda for the Construction Industry. Computers in Industry, 83, 121–139.
Olsen, T. L., and Tomlin, B. (2020). Industry 4.0: Opportunities and Challenges for Operations Management. Manufacturing and Service Operations Management, 22(1), 113–122.
Oztemel, E., and Gursev, S. (2020). Literature Review of Industry 4.0 and Related Technologies. Journal of Intelligent Manufacturing, 31, 127–182.
Panetto, H., Iung, B., Ivanov, D., Weichhart, G., and Wang, X. (2019). Challenges for the Cyberphysical Manufacturing Enterprises of the Future. Annual Reviews in Control, 47, 200–213.
Papadopoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., and Fosso-Wamba, S. (2017). The Role of Big Data in Explaining Disaster Resilience in Supply Chains for Sustainability. Journal of Cleaner Production, 142, 1108– 1118.
Park, H., Bellamy, M. A., and Basole, R. C. (2016). Visual Analytics for Supply Network Management: System Design and Evaluation. Decision Support Systems, 91, 89–102.
Pathak, S. D., Day, J. M., Nair, A., Sawaya, W. J., and Kristal, M. M. (2007). Complexity and Adaptivity in Supply Networks: Building Supply Network Theory Using a Complex Adaptive Systems Perspective. Decision Sciences, 38(4), 547–580.
Piccarozzi, M., Aquilani, B., and Gatti, C. (2018). Industry 4.0 in Management Studies: A Systematic Literature Review. Sustainability, 10(10), 3821.
Queiroz, M. M., Ivanov, D., Dolgui, A., and Fosso Wamba, S. (2022). Impacts of Epidemic Outbreaks on Supply Chains: Mapping a Research Agenda Amid the COVID-19 Pandemic through a Structured Literature Review. Annals of Operations Research, (319)1, 1159-1196. Doi: 10.1007/s10479-020-03685-7.
Raj, A., Dwivedi, G., Sharma, A., de Sousa Jabbour, A. B. L., and Rajak, S. (2020). Barriers to the Adoption of Industry 4.0 Technologies in the Manufacturing Sector: An Inter-country Comparative Perspective. International Journal of Production Economics, 224, 107546.
Rossit, D. A., Tohmé, F., and Frutos, M. (2019). Industry 4.0: Smart Scheduling. International Journal of Production Research, 57(12), 3802–3813.
Sari, K. (2008). On the Benefits of CPFR and VMI: A Comparative Simulation Study. International Journal of Production Economics, 113(2), 575–586.
Schoenherr, T., and Speier‐Pero, C. (2015). Data Science, Predictive Analytics, and Big Data in Supply Chain Management: Current State and Future Potential. Journal of Business Logistics, 36(1), 120–132.
Siemens. (2019). What doesn’t Happen Keeps our World Running Smoothly – The Power of MindSphere. Accessed 18 November (2019). https://www.plm.automation.siemens.com/ global/en/topic/mindsphere-whitepaper/28842.
Slack, N. (1987). The Flexibility of Manufacturing Systems. International Journal of Operations and Production Management, 7(4), 35–45.
Sodhi, M. S., Son, B. G., and Tang, C. S . (2012). Researchers’ Perspectives on Supply Chain Risk Management. Production and Operations Management, 21(1), 1–13.
Sodhi, M. S., and Tang, C. S. (2012). Managing supply chain risk (Vol. 172). Springer Science and Business Media.
Sokolov, B., Ivanov, D., and Dolgui, A. (2020). Scheduling in industry 4.0 and cloud manufacturing (Vol. 289). New York: Springer.
Stadtler, H., Fleischmann, B., Grunow, M., Meyr, H., and Sürie, C. (2011). Advanced planning in supply chains: Illustrating the concepts using an SAP® APO case study. Springer Science & Business Media.
Stecke, K. E. (1983). Formulation and Solution of Non-linear Integer Production Planning Problems for Flexible Manufacturing Systems. Management Science, 29(3), 273–288.
Surana, A., Kumara*, S., Greaves, M., and Raghavan, U. N. (2005). Supply-chain Networks: A Complex Adaptive Systems Perspective. International Journal of Production Research, 43(20), 4235–4265.
Swaminathan, J. M., Smith, S. F., and Sadeh, N. M. (1998). Modeling Supply Chain Dynamics: A Multiagent Approach. Decision Sciences, 29(3), 607–632.
Tang, C. S., and Veelenturf, L. P. (2019). The Strategic Role of Logistics in the Industry 4.0 Era. Transportation Research Part E: Logistics and Transportation Review, 129, 1–11.
Tao, F., Qi, Q., Liu, A., and Kusiak, A. (2018). Data-driven Smart Manufacturing. Journal of Manufacturing Systems, 48, 157–169.
Tully, S. (1993). The modular corporation. Fortune, 127(3), 106.
Eck, N. J. V., and Waltman, L. )2009(. How to Normalize Co-occurrence Data? An Analysis of Some Well-known Similarity Measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651.
Bertalanffy, L. V. (1968). General system theory: Foundations, development, applications. G. Braziller.
Waller, M. A., and Fawcett, S. E. (2013). Data Science, Predictive Analytics, and big Data: A Revolution that will Transform Supply Chain Design and Management. Journal of Business Logistics, 34(2), 77–84.
Wamba, S. F., and Chatfield, A. T. (2009). A Contingency Model for Creating Value from RFID Supply Chain Network Projects in Logistics and Manufacturing Environments. European Journal of Information Systems, 18(6), 615–636.
Wamba, S. F., Ngai, E. W., Riggins, F., and Akter, S. (2017). Transforming Operations and Production Management Using Big Data and Business Analytics: Future Research Directions. International Journal of Operations and Production Management, 37(1), 2–9.
Warnecke, H. J., and Braun, J. (Eds.). (2013). Vom Fraktal zum Produktionsnetzwerk: Unternehmenskooperationen erfolgreich gestalten. Springer-Verlag.
Wiendahl, H. P., Reichardt, J., and Nyhuis, P . (2015). Handbook Factory Planning and Design. Berlin: Springer.
Xu, X. (2012). From Cloud Computing to Cloud Manufacturing. Robotics and Computer-Integrated Manufacturing, 28(1), 75–86.
Xu, J., Tran, H. M., Gautam, N., and Bukkapatnam, S. T. (2019). Joint Production and Maintenance Operations in Smart Custom-manufacturing Systems. IISE Transactions, 51(4), 406–421.
Xu, L. D., Xu, E. L., and Li, L . (2018). Industry 4.0: State of the Art and Future Trends. International Journal of Production Research, 56(8), 2941–2962.
Yang, H., Kumara, S., Bukkapatnam, S. T., and Tsung, F. (2019). The Internet of Things for Smart Manufacturing: A Review. IISE Transactions, 51(11), 1190–1216.
Yao, Y., Kohli, R., Sherer, S. A., and Cederlund, J. (2013). Learning Curves in Collaborative Planning, Forecasting, and Replenishment (CPFR) Information Systems: An Empirical Analy-sis Form a Mobile Phone Manufacturer. Journal of Operations Management, 31(6), 285–297.
Yin, Y., Stecke, K. E., and Li, D. (2018). The Evolution of Production Systems from Industry 2.0 Through Industry 4.0. Inter-national Journal of Production Research, 56(1–2), 848–861.
Zhao, K., Zuo, Z., and Blackhurst, J. V. (2019). Modelling Supply Chain Adaptation for Disruptions: An Empirically Grounded Complex Adaptive Systems Approach. Journal of Operations Management, 65(2), 190–212.
Zhong, R. Y., Xu, C., Chen, C., and Huang, G. Q. (2017). Big Data Analytics for Physical Internet-based Intelligent Manufacturing Shop Floors. International Journal of Production Research, 55(9), 2610–2621.
Zühlke, D. (2009). SmartFactory–A Vision Becomes Reality. IFAC Proceedings Volumes, 42(4), 31–39.