Application of Quantum Machine Learning Algorithms in Financial Sciences

Document Type : Promotional article

Authors

1 Amirkabir University of Technology

2 Imam Reza International University

3 Department of Management, Faculty of Humanities and Social Sciences, Golestan University, Gorgan, Iran

Abstract

Machine learning is a set of algorithms that make it possible for a computer to learn statistical patterns in existing data without explicit programming. Machine learning has many applications in financial services such as fraud detection, automated portfolio management, estimating transaction risk levels, and more. But since most of these methods require large amounts of data, performing these calculations on classical computers requires a large amount of computational time and resources. Because of their parallel processing power, quantum computers can solve certain computational problems much faster than their classical counterpart algorithms. Therefore, it is possible to increase the quantum speed in machine learning algorithms. This article examines the impact of quantum machine learning on financial science. Specifically, the present study has tried to identify those computational problems in the field of financial sciences that the use of quantum machine learning method is superior to the best classical algorithms. The feasibility of physical realization of these methods in the short term has also been investigated.

Keywords


Albarrán-Arriagada, F., Retamal, J. C., Solano, E., and Lamata, L. (2018). "Measurement-Based Adaptation Protocol With Quantum Reinforcement Learning". Physical Review A, 98(4), pp. 042315.
Alcazar, J., Leyton-Ortega, V., and Perdomo-Ortiz, A. (2020). "Classical Versus Quantum Models In Machine Learning: Insights From A Finance Application". Machine Learning: Science and Technology, 1(3).
Allcock, J., Hsieh, C. Y., Kerenidis, I., and Zhang, S. (2020). "Quantum Algorithms For Feedforward Neural Networks". ACM Transactions on Quantum Computing, 1(1), pp. 1–24.
Arute, F., Arya, K., Babbush, R. et al. (2019). "Quantum Supremacy Using A Programmable Superconducting Processor". Nature, pp. 505-510.
Biamonte, J., Wittek, P., Pancotti, N. et al. (2017). "Quantum Machine Learning". Nature, 549, pp. 195-202.
Blackstad, R. B., and Ospelkaus, C. (2009). "High Fidelity Transport Of Trapped-Ion Qubits Through An X-Junction Trap Array". Quantum Information and Computation, 9, pp. 920-949.
Carrasquilla, J. (2020). "Machine Learning For Quantum Matter". Advances in Physics X, 5(1).
Chakrabarti, S., Yiming, H., Li, T., Feizi, S., and Wu, X. (2019). "Quantum Wasserstein Generative Adversarial Networks". Advances in Neural Information Processing Systems, pp. 6781–6792.
Charpentier, A., Romuald, E., and Remlinger, C. (2021). "Reinforcement Learning In Economics And Finance". Computational Economics, pp. 1-38.
Chatterjee, R., and Yu, T. (2017). "Generalized Coherent States, Reproducing Kernels, And Quantum Support Vector Machines". Quantum Information and Computation, 17, pp 1292–1306
Chen, L., Pelger, M., and Zhu, J. (2019). Deep learning in asset pricing. SSRN, Report No. 3350138.
Chong, F. T., Franklin, D., and Martonosi, M. (2017). "Programming Languages And Compiler Design For Realistic Quantum Hardware". Nature, 549, pp. 180-187.
Cong, I., Choi, S., and Lukin, M. (2019). "Quantum Convolutional Neural Networks". Nature Physics, 15(12), pp. 1273–1278.
Cormen, T. H., Leiserson, C. E., Rivest, R. L. , and Stein, C. (2009). Introduction to algorithms. MIT press.
Culkin, R., and Das, S. R. (2017). "Machine Learning In Finance: The Case Of Deep Learning For Option Pricing". Journal of Investment Management, 15(4), pp. 92-100.
Ding, Y., Gonzalez-Conde, J., Lamata, L., et al. (2019). "Towards Prediction of Financial Crashes with a D-Wave Quantum Computer". Working paper,URL: https: //arxiv. org/pdf/1904. 05808. pdf.
Dixon, M. F., Halperin, I., and Bilokon, P. (2020). Machine Learning in Finance. Springer International Publishing.
Fanizza, M., Rosati, M., Skotiniotis, M., Calsamiglia, J., and Giovannetti, V. (2020). "Beyond the swap test: optimal estimation of quantum state overlap". Physical review letters, pp. 124(6).
Gilyén, A., Su, Y., Low, G., and Wiebe, N. (2018). "Quantum Singular Value Transformation And Beyond: Exponential Improvements For Quantum Matrix Arithmetics". In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing.
Haener, T, Soeken, M., Roetteler, M. and Svore, K. M. (2018). "Quantum Circuits For Floating-Point Arithmetic". International Conference on Reversible Computation. Springer, Cham.
Harrow, A. W., Hassidim, A., and Lloyd, S. (2009). "Quantum Algorithm For Linear Systems Of Equations". Physical review letters, 103(15), pp. 150502.
Home, J. P., Hanneke, D., and Jost, J. (2009). "Complete Methods Set For Scalable Ion Trap Quantum Information Processing". Science, 325.
Houshmand, M., Houshmand, M., and Fitzsimons, J. (2018). "Minimal Qubit Resources For The Realization Of Measurement-Based Quantum Computation". Physical Review A, 98(1).
Hu, F., Wang, B., Wang, N., and Wang C. (2019). "Quantum Machine Learning With D‐Wave Quantum Computer". Quantum Engineering, 1(2), pp. 12.
Hull, I., Sattath, O., Diamanti, E., and Wendin, G. (2021). "Quantum Technology for Economists". Papers 2012. 04473, arXiv. org.
Iordanis, K., and Landman, J. (2021). "Quantum Spectral Clustering". Physical Review A, 103(4).
Itay, E., and Spedalieri, F. M. (2016). "Quantum Annealing For Constrained Optimization". Physical Review Applied, 5(3).
Kerenidis, I. ( 2020). A method for loading classical data into quantum states for applications in machine learning and optimization. U. S. Patent Application No. 16/986,553 and 16/987,235.
Kerenidis, I., Landman, J., and Prakash, A. (2020). "Quantum Algorithms For Deep Convolutional Neural Networks". Proceedings of International Conference on Learning Representations (ICLR).
Kerenidis, I., Landman, J., Luongo, N., and Prakash, A. (2018). "q-means: A Quantum Algorithm For Unsupervised Machine Learning". arXiv preprint arXiv, 1812. 03584.
Kerenidis, I., and Prakash, A. (2017). "Quantum Recommendation Systems". Proceedings of the 8th Innovations in Theoretical Computer Science Conference.
Kerenidis, I., and Prakash, A. (2020). "Quantum Gradient Descent For Linear Systems And Least Squares". Physical Review A, 101(2).
Kerenidis, I., Luongo, A., and Prakash, A. (2020). "Quantum Expectation-Maximization For Gaussian Mixture Models". Proceedings of International Conference on Machine Learning (ICML).
Kolm, P. N., and Ritter, G. (2020). "Modern Perspectives On Reinforcement Learning In Finance". The Journal of Machine Learning in Finance, 1(1).
Kwangwon, A., Choi, M., Dai, B., Sohn, S., and Yang, B. (2018). "Modeling Stock Return Distributions With A Quantum Harmonic Oscillator". EPL (Europhysics Letters), 120(3).
Lessmann, S., Baesens, B., Seow, H. V., Thomas, L. C. (2015). "Benchmarking State-Of-The-Art Classification Algorithms For Credit Scoring: An Update Of Research". European Journal of Operational Research, 247(1).
Lloyd, S., Mohseni, M., and Rebentrost, P. (2014). "Quantum Principal Component Analysis". Nature Physics,, 10(9), p. 631.
Lpaydin, E. (2020). Introduction to machine learning. MIT press.
Marinescu, D. C., and Marinescu, G. M. (2004). Approaching quantum computing. Prentice Hall.
Martin, A, Candelas, B., Rodríguez-Rozas, A., et al. (2021). "Toward Pricing Financial Derivatives With An Ibm Quantum Computer". Physical Review Research, 3(1).
Meter, R. V., and Oskin, M. (2006). "Architectural Implications Of Quantum Computing Technologies". ACM Journal on Emerging Technologies in Computing Systems, 2, pp. 31-63.
Mosteanu, N. R., and Faccia, A. (2021). "Fintech Frontiers in Quantum Computing, Fractals, and Blockchain Distributed Ledger: Paradigm Shifts and Open Innovation". JOItmC, MDPI, 7(1), pp. 1-19.
Mousavi, M., Houshmand, M., and Bolokian, M. (2021). "The Cost Reduction Of Distributed Quantum Factorization Circuits". International Journal of Theoretical Physics, 60(4), pp. 1292-1298.
Nielsen, M. A., and Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
Orús, R., Mugel, S., and Lizaso, E. (2019). "Quantum Computing For Finance: Overview And Prospects". Reviews in Physics, 4.
Ramezanpour, A. (2017). "Optimization By A Quantum Reinforcement Algorithm". Physical Review A, 96(5).
Rebentrost, P., Mohseni, M., and Lloyd, S. (2014). "Quantum Support Vector Machine For Big Data Classification". Physical Review Letters, 113(1).
Sergio, F., Fabozzi, F. J., and Mazza, D. (2020). "Quantum Option Pricing And Quantum Finance". The Journal of Derivatives, 28(1), pp. 79-98.
Spiller, T. P., Munro, W., Barrett, S., and Kok, P. (2005). "An Introduction To Quantum Information Processing: Applications And Realizations". Contemporary Physics, 46, pp. 407-436.
Stamatopoulos, N., Egger, D. J., Sun, Y., Zoufal, C., Iten, R., Shen, N. , and Woerner, S. (2020). "Option Pricing Using Quantum Computers". Quantum, 4, p. 291. doi: https: //doi. org/10. 22331/q-2020-07-06-291
Von Luxburg, U. (2007). "A Tutorial On Spectral Clustering". Statistics and computing, 17(4), pp. 395-416.
Li, X., Liu, X., Xu, N., and Du, J. (2015). "Experimental Realization Of A Quantum Support Vector Machine". Physical Review Letters, 114.
Zhang, Y., and Ni, Q. (2020). "Recent Advances In Quantum Machine Learning". Quantum Engineering, 2(1), p. 34.